More toposes and C^* -algebras

Jonathon Funk jfunk@qcc.cuny.edu

Queensborough Community College, CUNY

NYCTS October 29, 2025

A unital C^* -algebra \mathcal{A} has associated with it a category $\mathcal{M}(\mathcal{A}) = \mathcal{M}$, which I call the division category of (the underlying ring of) A. A typical object of M is an element of A, denoted R, S etc., and a morphism $U: R \longrightarrow S$ is an element U of A such that Ann(R) = Ann(U) and U = SX for some X, where $Ann(R) = \{X \in \mathcal{A} \mid RX = 0\}$. (There is also a category with the same objects but with morphisms U such that $Ann(R) \subset Ann(U)$; however, I prefer to work with \mathcal{M} as it offers a bit more flexibility.) For instance, for any element R of A, the objects R and R^*R are isomorphic in \mathcal{M} . It is sometimes good to know that there is a weak equivalence functor from \mathcal{M} to the category of principal right ideals of A and injective A-module maps between them mapping an object R of M to the right ideal RA it generates. Let \mathcal{M} denote the topos of presheaves on \mathcal{M} .

We shall discuss three aspects beginning with:

- 1. The positive quotient and polar decomposition. An operator T on Hilbert space has a polar form T = UA, where A is positive, U is a partial isometry, and Ann(T) = Ann(U). Let us say that a C^* -algebra \mathcal{A} admits polar decomposition if every element of it has such a decomposition. It follows that if A admits polar decomposition, then necessarily A is supported as I call it. (Moreover, it follows that $A = |T| = \sqrt{T^*T}$ and that the decomposition is unique.) How do we generalize polar decomposition to all C^* -algebras, and not just the supported ones? This question has an answer in terms of a canonical correspondence between wide étale subcategories of \mathcal{M} and the quotients in \mathscr{M} of the representable presheaf associated with unit of A.
- 2. The Gelfand spectrum of a commutative C^* -algebra: 1-dimensional representations. How this is related to $\mathcal M$ follows a pattern similar to the Zariski spectrum of a commutative ring.

3. GNS-representation theory (in any dimension), and the spectrum of an arbitrary C^* -algebra. One of our tools is what we shall call a seminormed \mathcal{A} -module, by which we mean a right \mathcal{A} -module \mathcal{V} that carries a seminorm such that

$$\forall v \in \mathcal{V}, \ \forall U \in \mathcal{A}, \ \|vU\| \le \|v\| \|U\|.$$

(Thus, if $\|v\|=0$, then $\|vU\|=0$ for every U.) The functional dual $B(\mathcal{A})$, consisting of bounded \mathbb{C} -linear maps $\tau:\mathcal{A}\longrightarrow\mathbb{C}$, is an important \mathcal{A} -module especially for GNS-theory. Its right action is defined by

$$\tau U(X) = \tau(XU^*); \ \tau \in B(A). \tag{1}$$

What is more this action satisfies $\|\tau U\| \leq \|\tau\| \|U\|$, so $B(\mathcal{A})$ is a normed \mathcal{A} -module. $B(\mathcal{A})$ classifies functionals in the sense that for any seminormed \mathcal{A} -module \mathcal{V} there is a natural isomorphism

$$B(\mathcal{V})\cong \mathcal{A} ext{-Bdd}(\mathcal{V},B(\mathcal{A}))$$
.

Another important tool is how to parameterize a (right) \mathcal{A} -module as an object of \mathcal{M} : if \mathcal{V} is an \mathcal{A} -module, then

$$\widehat{\mathcal{V}}(R) = \mathcal{A}\text{-Mod}(R\mathcal{A}, \mathcal{V}) \cong \{ v \in \mathcal{V} \mid \mathsf{Ann}(R) \subseteq \mathsf{Ann}(v) \}$$

is a presheaf on \mathcal{M} . If \mathcal{V} is a seminormed \mathcal{A} -module, then an \mathcal{A} -module map $R\mathcal{A} \longrightarrow \mathcal{V}$ is necessarily bounded. Therefore, we have

$$\widehat{\mathcal{V}}(R) = \mathcal{A}\text{-Bdd}(R\mathcal{A}, \mathcal{V}) \text{ (bounded } \mathcal{A}\text{-module maps)}.$$
 (3)

The presheaf associated with B(A) is given by

$$\widehat{B(A)}(R) \stackrel{\text{(3)}}{=} A\text{-Bdd}(RA, B(A)) \stackrel{\text{(2)}}{\cong} B(RA). \tag{4}$$

From this point of view transition in $\widehat{B(A)}$ along a morphism $U:R\longrightarrow S$ of $\mathcal M$ is achieved in the following way by passing to principal right ideals.

$$RA \xrightarrow{SA} SA \quad \tau \cdot U(RX) = \tau(UX)$$

The upshot is that $\widehat{B(\mathcal{A})}$ is the presheaf of functional germs on \mathcal{A} , suggesting that $\widehat{B(\mathcal{A})}$ may be interpreted as the complex numbers object of the topos \mathscr{M} . In any case, $\widehat{B(\mathcal{A})}$ is a ring object with a conjugation operation (such that $\overline{\tau}(SX) = \overline{\tau(SX)}$) internal to \mathscr{M} .

Supported C^* -algebra 1

Support/cosupport projection

- A support projection C(T) satisfies $C(T) \leq P$ iff T = PT
- A cosupport projection N(T) satisfies $P \leq N(T)$ iff TP = 0

Support hypothesis

We shall say that a C^* -algebra \mathcal{A} is supported if:

- **①** every $T \in \mathcal{A}$ has a support projection C(T) such that
- \lozenge $\forall S, T, R : C(S) \leq C(T) \Rightarrow C(RS) \leq C(RT)$ (stability).

Equivalent cosupport hypothesis

- lacktriangledown every T has a cosupport projection N(T) such that

Supported C^* -algebra 2

For any $T \in \mathcal{A}$ let Ann $(T) = \{ X \in \mathcal{A} \mid TX = 0 \}$

Blackadar [1]

For every $T \in \mathcal{A}$ there is a projection P such that $\mathsf{Ann}(T) = \mathsf{Ann}(P)$. This implies $P = \mathcal{C}(T^*)$.

Rickart

For every $T \in \mathcal{A}$ there is an idempotent E such that $\mathsf{Ann}(T) = \mathsf{Ann}(E)$.

Theorem

The three notions supported, Blackadar, and Rickart are equivalent.

Kerzman-Stein formula [2]: $C(E) = E(E + E^* - I)^{-1}$

Supported C^* -algebra 3

von Neumann algebra

 $B(\mathcal{H})$ and more generally any von Neumann algebra is supported in this sense.

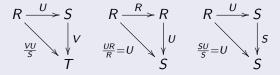
C(X)

What about the C^* -algebra C(X) of continuous functions on a (connected) compact Hausdorff space X? Generally, C(X) is not supported.

Definition of $\mathcal{M}(A) = \mathcal{M}$

Objects: elements of ${\cal A}$

Morphisms: $U: R \longrightarrow S$ such that Ann(R) = Ann(U), and $U \in SA$ (also written $S \mid U$).



If U = SX, then $\frac{VU}{S} = VX$.

The divisor preorder

Let $\mathsf{DIV}(\mathcal{A})$ denote the divisor preorder \preceq on (the underlying ring of) \mathcal{A} such that $U \preceq R$ if U = RX for some X.

Proposition

Then $\mathsf{DIV}(\mathcal{A}) \simeq \mathcal{M}/I$.

Proof

Objects: R maps to $R: R \longrightarrow I$, and in the other direction $U: R \longrightarrow I$ to U. The top morphism is an isomorphism.

Definition

Let ${\mathscr M}$ denote the topos of presheaves on ${\mathcal M}$.

Representable presheaf

Let
$$S \in \mathcal{A}$$
. $\widehat{S} : \mathcal{M}^{op} \longrightarrow Set$
 $\widehat{S}(R) = \mathcal{M}(R, S) = \{ \text{ morphisms } U : R \longrightarrow S \text{ of } \mathcal{M} \}$
 $= \{ U \mid Ann(R) = Ann(U) \text{ and } S \mid U \}.$

Representable presheaf associated with the unit I

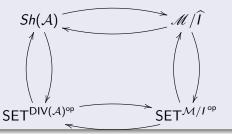
$$\widehat{I}: \mathcal{M}^{\mathrm{op}} \longrightarrow \mathit{Set}$$
 $\widehat{I}(R) = \{ \ U \in \mathcal{A} \mid \mathsf{Ann}(R) = \mathsf{Ann}(U) \}$
Note: $R \in \widehat{I}(R)$ so \widehat{I} has global support.

Proposition

 \mathcal{M} is an étendue.

Proof

A right \mathcal{A} -subset of \mathcal{A} is the same as a downset of $\mathsf{DIV}(\mathcal{A})$. Let $\mathcal{O}(\mathcal{A})$ denote the frame of right \mathcal{A} -subsets of \mathcal{A} , with topos $\mathsf{Sh}(\mathcal{A})$. $\mathcal{O}(\mathcal{A})$ and the frame $\mathsf{Sub}(\widehat{I})$ are isomorphic.



Definition

A subcategory $\mathcal{D} \longrightarrow \mathcal{M}$ is an étale subcategory if:

- for any two objects R, S of \mathcal{D} , if $S \mid R$, then the morphism $R: R \longrightarrow S$ is in \mathcal{D} ;
- $\text{in a triangle } R \xrightarrow{U} S \text{ of composable morphisms of } \mathcal{M}$

if $V, \frac{VU}{S} \in \mathcal{D}$, then $U \in \mathcal{D}$.

Example: projections and partial isometries

Let $\partial \longrightarrow \mathcal{M}$ denote the subcategory whose objects are all the projections of \mathcal{A} , such that a morphism $U:P\longrightarrow Q$ is in ∂ just when U is a partial isometry.

Proposition

A morphism $U: P \longrightarrow Q$ of \mathcal{M} is in ∂ iff $P = U^*U$.

 $\partial \longrightarrow \mathcal{M}$ is an étale subcategory.

Proof

If U is a partial isometry, then it follows that $P = C(U^*) = U^*U$. Conversely, if $P = U^*U$, then U is a partial isometry.

Definition

A subcategory $\mathcal{D} \longrightarrow \mathcal{M}$ is wide if it every object of \mathcal{M} is in \mathcal{D} .

Theorem

Wide étale subcategories of $\mathcal M$ and quotients of $\widehat I$ correspond.

Wide étale subcats quotients of \widehat{I}

Example

Let $\mathcal{I}\subseteq\mathcal{A}$ be a right ideal. Then the morphisms $U:R\longrightarrow S$ such that $U\equiv R\pmod{\mathcal{I}}$ form a wide étale subcategory of \mathcal{M} .

Lemma 1

Suppose $\mathcal{D} \longrightarrow \mathcal{M}$ is a wide étale subcategory. Suppose we are given S, V such that Ann(S) = Ann(V). Then t.f.a.e.

- the morphism $V: S \longrightarrow I$ is in \mathcal{D} ;
- ② for any T, if $T \mid V$, then $V : S \longrightarrow T$ is in D;
- **3** the morphism $V: S \longrightarrow V$ is in \mathcal{D} .

Lemma 2

A wide étale subcategory of ${\mathcal M}$ is closed under domain restrictions.

Proof

The domain restriction of a morphism is the following factorization. Let $U=\frac{VR}{S}$.

$$\begin{array}{ccc}
R & \xrightarrow{U} & U \\
R & & \downarrow U \\
S & \xrightarrow{V} & T
\end{array}$$

If the morphism V is in \mathcal{D} , then $R \stackrel{U}{\longrightarrow} U$ is in \mathcal{D} .

Coset of a subcategory $\mathcal{D} \longrightarrow \mathcal{M}$

Let $U \in \mathcal{A}$. Let

$$\mathcal{D}U = \{ \frac{VU}{S} \mid S \mid U \text{ and } V : S \longrightarrow T \in \mathcal{D} \}$$

We call $\mathcal{D}U$ a coset of \mathcal{D} . $\mathcal{D}U$ is a subset of \mathcal{A} .

Example

$$\mathcal{D}I = \{ \frac{V}{S} \mid S \mid I \text{ and } V : S \longrightarrow T \in \mathcal{D} \}$$

Lemma 3

Suppose $\mathcal{D} \longrightarrow \mathcal{M}$ is a subcategory.

- **1** If a morphism $V: S \longrightarrow T$ of \mathcal{M} is in \mathcal{D} , then $V \in \mathcal{D}S$.
- ② $U \in \mathcal{D}U$ iff there is an object S of \mathcal{D} such that $S \mid U$.

Proof

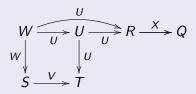
- 1. Use $S \stackrel{S}{\longrightarrow} S \stackrel{V}{\longrightarrow} T$ equals V.
- 2. Use $U \xrightarrow{U} S \xrightarrow{S} S$ equals U.

Lemma 4

Suppose $\mathcal{D} \longrightarrow \mathcal{M}$ is a wide étale subcategory. Let $U, W \in \mathcal{A}$. Then $U \in \mathcal{D}W$ iff $\mathcal{D}U \subseteq \mathcal{D}W$.

Proof

Suppose $U \in \mathcal{D}W$, so that $U = \frac{VW}{S}$, V is in \mathcal{D} . Let $\frac{XU}{R}$ be an arbitrary element of $\mathcal{D}U$. By Lemma 2 the domain restriction is in \mathcal{D} (diagram). The other two top horizontals are also in \mathcal{D} .



Thus, the composite $\frac{XU}{R}$ is in \mathcal{D} . By Lemma 3 $\frac{XU}{R} \in \mathcal{D}W$.

Presheaf of cosets for wide étale $\mathcal{D} \longrightarrow \mathcal{M}$

$$\widehat{I}/\mathcal{D}(R) = \{ \mathcal{D}U \mid \mathsf{Ann}(R) = \mathsf{Ann}(U) \}$$

Transition along $W:Q\longrightarrow R$ maps $\mathcal{D}U\mapsto \mathcal{D}\frac{UW}{R}$. Well-defined: suppose $\mathcal{D}U_1=\mathcal{D}U_2$. Then $U_1\in \mathcal{D}U_2$, so $\frac{U_1W}{R}\in \mathcal{D}\frac{U_2W}{R}$. By Lemma 4 we have $\mathcal{D}\frac{U_1W}{R}\subseteq \mathcal{D}\frac{U_2W}{R}$. The other inclusion is just the same.

The quotient $q: \widehat{I} \longrightarrow \widehat{I}/\mathcal{D}$

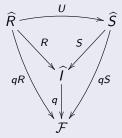
We have a map

$$q_R: \widehat{I}(R) \longrightarrow \widehat{I}/\mathcal{D}(R); \ U \mapsto \mathcal{D}U.$$

Naturality is immediate, so we have a legitimate quotient q in \mathcal{M} . The corresponding element $q \in \widehat{I}/\mathcal{D}(I)$ is the coset $\mathcal{D}I$.

Principal fiber of $q: \widehat{I} \longrightarrow \mathcal{F}$, where \mathcal{F} is a presheaf

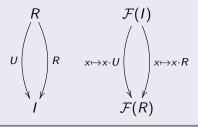
A morphism $U: R \longrightarrow S$ is in the principal fiber of q just when the outside triangle commutes (the inside one commutes iff $R = \frac{SU}{S} = U$).



Let PF(q) denote the principal fiber of q.

Equivalently, let $q \in \mathcal{F}(I)$

 $U: R \longrightarrow S$ is in PF(q) just when $q \cdot U = q \cdot R$



Proposition

FP(q) is a wide étale subcategory of ${\mathcal M}$.

Lemma 5

Let $q \in \mathcal{F}(I)$. For any $U, W \in \widehat{I}(R)$, we have $U \in PF(q)W$ iff $q \cdot U = q \cdot W$.

Proof

Suppose $U \in PF(q)W$. Then we have a diagram like this, where $V \in PF(q)$, so $q \cdot V = q \cdot S$.

$$R \xrightarrow{U} S \xrightarrow{V} I$$

Then

$$q \cdot U = (q \cdot V) \cdot W = (q \cdot S) \cdot W = q \cdot (\frac{SW}{S}) = q \cdot W$$
.

Proof continued...

Suppose $q \cdot U = q \cdot W$. Then we have a diagram like this:

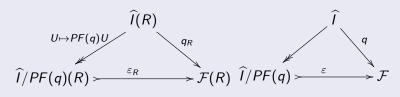
$$R \xrightarrow{W} W \xrightarrow{U} I$$

Then $U \in PF(q)$, whence $U = UW \in PF(q)W$ (Lemma 3 again).

The comparison map arepsilon(q)=arepsilon associated with $q\in\mathcal{F}(I)$

Let $\varepsilon_R(FP(q)U) = q_R(U) = q \cdot U$.

By Lemma 5 ε_R is a well-defined injective map.



arepsilon is an isomorphism iff q is an epimorphism.

Proof of Theorem

It remains to show that a given wide étale subcategory $\mathcal D$ is recovered as the principal fiber of the quotient $q:\widehat I \longrightarrow \widehat I/\mathcal D$. A morphism $U:R\longrightarrow S$ of $\mathcal M$ is in PF(q) iff $\mathcal DU=\mathcal DI\cdot U=\mathcal DI\cdot R=\mathcal DR$, which is so iff $U\in \mathcal DR$ and $R\in \mathcal DU$. If $U:R\longrightarrow S$ is in $\mathcal D$, then the isomorphism $U:R\longrightarrow U$ and its inverse $R:U\longrightarrow R$ are in $\mathcal D$. It follows that $U\in \mathcal DR$ and $R\in \mathcal DU$, so $\mathcal D$ is a subcategory of PF(q). Conversely, suppose $U:R\longrightarrow S$ is a morphism of $\mathcal M$ satisfying $U\in \mathcal DR$. Then we have a diagram, where $V\in \mathcal D$.

$$R \xrightarrow{R} T \xrightarrow{V} I$$

Therefore, $U: R \longrightarrow I$ is in \mathcal{D} .

By the étale property $U: R \longrightarrow S$ is in \mathcal{D} .

The presheaf of positive operators $\widehat{I}^+: \mathcal{M}^{\mathrm{op}} \longrightarrow \mathit{Set}$

 $0 \le A$ means A is self-adjoint, non-negative spectrum. Let

$$\widehat{I}^+(R) = \{\, 0 \leq A \mid \mathsf{Ann}(A) = \mathsf{Ann}(R) \,\}$$

Transition in \widehat{I}^+ along $U: R \longrightarrow S$ of $\mathcal{M}:$ let $A \in \widehat{I}^+(S)$. Therefore, $\sqrt{A} \in \widehat{I}^+(S)$.

Define $A \cdot U = (\frac{\sqrt{A}U}{S})^* \frac{\sqrt{A}U}{S} = \frac{U^*AU}{S^*S}$, which is positive. If U = SX, then $\frac{\sqrt{A}U}{S} = \sqrt{A}X$ so $A \cdot U = (\sqrt{A}X)^* \sqrt{A}X = X^*AX$.

The positive quotient $d: \widehat{I} \longrightarrow \widehat{I}^+$

 $d_R: \widehat{I}(R) \longrightarrow \widehat{I}^+(R); \ d_R(U) = U^*U$

d is a natural transformation (exercise).

d is an epimorphism: if Ann(A) = Ann(R), then $d_R(\sqrt{A}) = A$.

Exercise

By Yoneda, d corresponds to an element of

$$\widehat{I}^+(I) = \{ 0 \le A \mid \mathsf{Ann}(A) = 0 \}.$$

This element is the unit I.

The principal fiber of the positive quotient d

A morphism $U: R \longrightarrow S$ of \mathcal{M} is in PF(d) just when

$$U^*U = I \cdot U = I \cdot R = R^*R.$$

This condition is stronger than the annihilator condition: if $U^*U=R^*R$, then

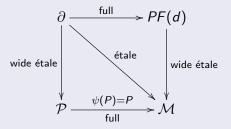
$$Ann(U) = Ann(U^*U) = Ann(R^*R) = Ann(R).$$

Projections and partial isometries again

Let $\mathcal{P}(\mathcal{A}) = \mathcal{P}$ denote the full subcategory of \mathcal{M} on the projections of \mathcal{A} . In other words, the objects of \mathcal{P} are the projections of \mathcal{A} , and a morphism $U:P\longrightarrow Q$ is an element $U\in\mathcal{A}$ such that $\mathsf{Ann}(P)=\mathsf{Ann}(U)$ and U=QU. The étale subcategory $\partial\longrightarrow\mathcal{M}$ factors through \mathcal{P} as a wide étale subcategory (next diagram).

Proposition

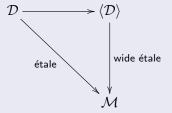
The following is a pullback of subcategories of ${\mathcal M}$.



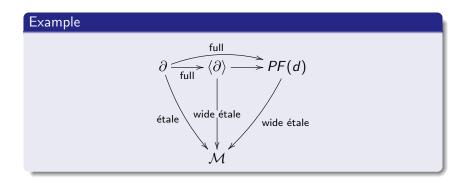
If $U: P \longrightarrow S$ is a morphism of PF(d), where P is a projection, then $U^*U = P^*P = P$, whence U^*U is a projection, so that U is a partial isometry. In particular, the top horizontal is full.

Generated wide étale subcategory

An étale subcategory $\mathcal D$ is contained in a smallest wide étale subcategory $\langle \mathcal D \rangle$.

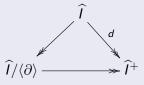


If an étale subcategory $\mathcal D$ is fully contained in a wide étale subcategory, then $\mathcal D \longrightarrow \langle \mathcal D \rangle$ is full.



Definition

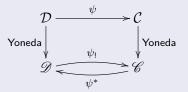
We shall say that a unital C^* -algebra \mathcal{A} admits polar decomposition if $\langle \partial \rangle = PF(d)$ (iff $\langle \partial \rangle \longrightarrow PF(d)$ is full). Equivalently, \mathcal{A} admits polar decomposition if the canonical natural transformation depicted below is an isomorphism (iff it is a monomorphism).



Comparing quotients across a geometric morphism 1

Presheaves

Essential geometric morphism:



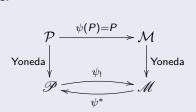
Let \mathcal{F} be a presheaf on \mathcal{C} . What is $\psi_!\psi^*(\mathcal{F})$?

$$\psi_! \psi^*(\mathcal{F})(C) = \{ C \xrightarrow{m} \psi D \xrightarrow{\times} \mathcal{F} \} / \sim$$

Comparing quotients across a geometric morphism 2

Example

Essential subtopos.



 ${\mathcal F}$ a presheaf on ${\mathcal M}$.

$$\psi_! \psi^*(\mathcal{F})(S) = \{ S \xrightarrow{U} P \xrightarrow{\times} \mathcal{F} \} / \sim$$

where P is a projection, U = PU, and $x \in \mathcal{F}(P)$.

The spectrum of a commutative C^* -algebra 1

Let ${\mathcal A}$ denote a unital commutative ${\mathcal C}^*$ -algebra ${\mathcal A}$.

Definition

Let $\mathcal{O}(\mathsf{Spec}(\mathcal{A}))$ denote the poset of norm-closed ideals of \mathcal{A} .

Proposition

 $\mathcal{O}(\operatorname{Spec}(\mathcal{A}))$ is a frame. Its points may be identified with the maximal ideals of \mathcal{A} .

For any ideal $\mathcal{I} \subseteq \mathcal{A}$ we have

$$\overline{\mathcal{I}} = \bigcap_{\mathcal{I} \subset M} M$$
 (norm-closure).

The spectrum of a commutative C^* -algebra 2

The functor H

We define a functor H

$$\begin{array}{c|c}
\mathsf{DIV}(\mathcal{A}) & \mathsf{(5)} \\
R \mapsto R \mathcal{A} \downarrow & \mathsf{H} \\
\mathcal{O}(\mathcal{A}) & \xrightarrow{\mathsf{H}^*} \mathcal{O}(\mathsf{Spec}(\mathcal{A}))
\end{array}$$

such that

$$H(R) = \overline{RA} = \bigcap_{R \in M} M$$
.

 $\mathcal{O}(\mathcal{A})$ denotes the frame of \mathcal{A} -subsets of \mathcal{A} (a subset of \mathcal{A} that is closed under multiplication by elements of \mathcal{A} .)

If $U \leq R$, then $H(U) \subseteq H(R)$, so that H is indeed a functor.

$$H(0) = (0)$$
, $H(I) = A$, and $H(RS) = H(R) \cap H(S)$.

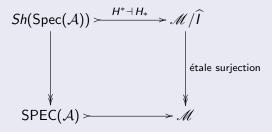
The spectrum of a commutative C^* -algebra 3

The frame map H^st

The suprema extension H^* is given by the norm-closure of the ideal generated by an \mathcal{A} -subset $\mathcal{X} \subseteq \mathcal{A}$:

$$H^*(\mathcal{X}) = \overline{(\mathcal{X})} = \bigcap_{\mathcal{X} \subseteq M} M$$
.

H is flat in the sense that H^* preserves finite infima. Thus, we have geometric morphisms as follows.



Functionals

A functional on ${\cal A}$ is a bounded linear map

 $\tau: \mathcal{A} \longrightarrow \mathbb{C}$ (complex numbers).

Let B(A) denote the vector space of functionals on A.

$$B(A)$$
 is a Banach space: $\|\tau\| = \sup_{X \neq 0} \frac{|\tau(X)|}{\|X\|}$

$$B(A)$$
 is an A -module: $\tau U(X) = \tau(XU^*)$

 $\|\tau U\| \le \|\tau\| \|U\|$ holds (exercise).

B(A) is a Banach A-module.

Positive functional

A functional τ is positive if $0 \le \tau(A)$ for every positive A.

Example: sesquilinear form on ${\cal A}$

If τ is a functional on $\mathcal A$, then $\langle U,V\rangle=\tau(UV^*)$ is a sesquilinear form on $\mathcal A$ satisfying

$$\langle UX, V \rangle = \langle U, VX^* \rangle$$
.

If au is positive, then $\langle U,V \rangle$ is a semi inner-product, so that $\|U\|_2 = \sqrt{\langle U,U \rangle} = \sqrt{\tau(UU^*)}$ is a seminorm on \mathcal{A} . $\|U\|_2$ is not to be confused with the C^* -algebra norm $\|U\|$ of \mathcal{A} . We have $\|U\|_2 = \|U\|$ just when $\tau(UU^*) = \|UU^*\|$.

Definition: sesquilinear form on an \mathcal{A} -module

Let ${\mathcal V}$ be an ${\mathcal A}$ -module. A sesquilinear form on ${\mathcal V}$ must satisfy

$$\langle uX, v \rangle = \langle u, vX^* \rangle$$
.

Jon

The Cauchy-Bunyakovsky-Schwartz Lemma (CBS)

If a sesquilinear form on ${\mathcal V}$ is positive and symmetric, then

$$|\langle u, v \rangle|^2 \leq \langle u, u \rangle \langle v, v \rangle$$
.

In particular, if au is positive (whence au is Hermitian), then

$$|\tau(UV^*)|^2 \le \tau(UU^*)\tau(VV^*).$$

Annihilators

$$Ann(\tau) = \{ V \mid \tau V = 0 \},$$

where $\tau V = 0$ means $\tau(UV^*) = 0$ for every $U \in \mathcal{A}$.

Lemma

For any positive τ and V we have $\tau V=0$ iff $\tau(VV^*)=0$.

Proposition

Let au be a positive functional on $\mathcal A$.

Then $U \equiv R \pmod{\operatorname{Ann}(\tau)}$ iff $\tau(UU^*) = \tau(RR^*) = \tau(RU^*)$.

Proof

If $U \equiv R \pmod{\mathrm{Ann}(\tau)}$, then $\tau U = \tau R$, whence $\tau(UU^*) = \tau(RR^*) = \tau(RU^*)$. Conversely, if these three are equal, then $\tau(UU^*) + \tau(RR^*) = \tau(RU^*) + \overline{\tau(RU^*)} = \tau(RU^*) + \tau(UR^*)$, so that $\tau((U-R)(U^*-R^*)) = 0$, whence $U \equiv R \pmod{\mathrm{Ann}(\tau)}$.

The wide étale subcategory of a positive au

Let τ be a positive functional on \mathcal{A} . Then its wide étale subcategory consists of morphisms $U:R\longrightarrow S$ of \mathcal{M} such that $\tau(UU^*)=\tau(RR^*)=\tau(RU^*)$.

Module to presheaf

Let $\widehat{B(A)}(R)$ denote

$$\mathcal{A}\text{-MOD}(R\mathcal{A},\mathcal{B}(\mathcal{A}))\cong \{\, au\in\mathcal{B}(\mathcal{A}) \mid \mathsf{Ann}(R)\subseteq\mathsf{Ann}(au)\, \}\,.$$

Transition in $\widehat{B(A)}$ along $U: R \longrightarrow S$ is given by

$$\tau \cdot U = \tau \frac{U}{S} = \tau Y; \ U = SY.$$

$$\tau \cdot U(X) = \tau Y(X) = \tau (XY^*); \quad \widehat{R} \xrightarrow{\tau \cdot U} \widehat{\widehat{S}(A)}$$

B(A) classifies functionals

Let \mathcal{V} be a seminormed \mathcal{A} -module.

$$\mathcal{A}\text{-BDD}(\mathcal{V}, \mathcal{B}(\mathcal{A})) \xrightarrow[\widehat{\delta} \leftrightarrow \delta]{\gamma \mapsto \overline{\gamma}} \mathcal{B}(\mathcal{V})$$

$$\overline{\gamma}(v) = \overline{\gamma(v)(I)} \; ; \; \widehat{\delta}(v)(U) = \overline{\delta(vU^*)}$$

For instance,

$$\overline{\gamma}(vz) = \overline{\gamma(vz)(I)} = \overline{\gamma(v)(\overline{z})} = \overline{\gamma(v)(I)\overline{z}} = \overline{\gamma}(v)z.$$

$\widehat{B(A)}$ again

Let V = RA

$$\{ \, au \in \mathcal{B}(\mathcal{A}) \mid \mathsf{Ann}(R) \subseteq \mathsf{Ann}(\tau) \, \}$$
 $\widehat{\delta} \leftarrow \delta$ $\mathcal{B}(R\mathcal{A})$

$$\overline{\tau}(RX) = \overline{\tau(X^*)} = \tau^{\dagger}(X) \; ; \; \widehat{\delta}(U) = \overline{\delta(RU^*)}$$

 $\overline{ au}$ is well-defined: if RX = RY, then $\tau X = \tau Y$ so that $\tau(X^*) = \tau X(I) = \tau Y(I) = \tau(Y^*)$.

Both sides are \mathcal{A} -modules (actually \mathcal{A} -algebras): the right side in the usual way (1), and the left side by $\tau \bullet U(X) = \tau(UX)$. Note that $\mathsf{Ann}(\tau) \subseteq \mathsf{Ann}(\tau \bullet U)$. Furthermore, the bijection respects the two actions.

On our way...

We are prepared to analyzed the geometric morphism

Bibliography 1

[1] B. Blackader.

Operator Algebras: Theory of C*-Algebras and von Neumann Algebras III, volume 122 of Encylopedia of Mathematical Sciences.

Springer, Berline Heidelberg New York, 2006.

[2] J. J. Kohila and V. Rakocevic. On the norm of idempotents in *C**-algebras. unpublished.

Thank you