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Introduction 1

A unital C ∗-algebra A has associated with it a category
M(A) = M , which I call the division category of (the underlying
ring of) A . A typical object of M is an element of A , denoted
R, S etc., and a morphism U : R // S is an element U of A such
that Ann(R) = Ann(U) and U = SX for some X , where
Ann(R) = {X ∈ A | RX = 0 } . (There is also a category with the
same objects but with morphisms U such that Ann(R) ⊆ Ann(U) ;
however, I prefer to work with M as it offers a bit more flexibility.)
For instance, for any element R of A , the objects R and R∗R are
isomorphic in M . It is sometimes good to know that there is a
weak equivalence functor from M to the category of principal right
ideals of A and injective A-module maps between them mapping
an object R of M to the right ideal RA it generates.
Let M denote the topos of presheaves on M .
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Introduction 2

We shall discuss three aspects beginning with:
1. The positive quotient and polar decomposition. An operator T
on Hilbert space has a polar form T = UA , where A is positive, U
is a partial isometry, and Ann(T ) = Ann(U) . Let us say that a
C ∗-algebra A admits polar decomposition if every element of it has
such a decompostion. It follows that if A admits polar
decomposition, then necessarily A is supported as I call it.
(Moreover, it follows that A = |T | =

√
T ∗T and that the

decomposition is unique.) How do we generalize polar
decomposition to all C ∗-algebras, and not just the supported ones?
This question has an answer in terms of a canonical correspondence
between wide étale subcategories of M and the quotients in M of
the representable presheaf associated with unit of A .
2. The Gelfand spectrum of a commutative C ∗-algebra:
1-dimensional representations. How this is related to M follows a
pattern similar to the Zariski spectrum of a commutative ring.
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Introduction 3

3. GNS-representation theory (in any dimension), and the
spectrum of an arbitrary C ∗-algebra. One of our tools is what we
shall call a seminormed A-module, by which we mean a right
A-module V that carries a seminorm such that

∀v ∈ V , ∀U ∈ A , ∥vU∥ ≤ ∥v∥ ∥U∥ .

(Thus, if ∥v∥ = 0 , then ∥vU∥ = 0 for every U .) The functional
dual B(A) , consisting of bounded C-linear maps τ : A // C , is
an important A-module especially for GNS-theory. Its right action
is defined by

τU(X ) = τ(XU∗) ; τ ∈ B(A) . (1)

What is more this action satisfies ∥τU∥ ≤ ∥τ∥ ∥U∥ , so B(A) is a
normed A-module. B(A) classifies functionals in the sense that for
any seminormed A-module V there is a natural isomorphism

B(V) ∼= A-Bdd(V,B(A)) . (2)
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Introduction 4

Another important tool is how to parameterize a (right) A-module
as an object of M : if V is an A-module, then

V̂(R) = A-Mod(RA,V) ∼= { v ∈ V | Ann(R) ⊆ Ann(v) }

is a presheaf on M . If V is a seminormed A-module, then an
A-module map RA // V is necessarily bounded. Therefore, we
have

V̂(R) = A-Bdd(RA,V) (bounded A-module maps) . (3)

The presheaf associated with B(A) is given by

B̂(A)(R)

(3)︷︸︸︷
= A-Bdd(RA,B(A))

(2)︷︸︸︷∼= B(RA) . (4)
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Introduction 5

From this point of view transition in B̂(A) along a morphism
U : R // S of M is achieved in the following way by passing to
principal right ideals.

RA

τ ·U ""

RX 7→UX++
SA
τ

��
C

τ · U(RX ) = τ(UX )

The upshot is that B̂(A) is the presheaf of functional germs on A ,

suggesting that B̂(A) may be interpreted as the complex numbers

object of the topos M . In any case, B̂(A) is a ring object with a
conjugation operation (such that τ(SX ) = τ(SX ) ) internal to M .
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Supported C ∗-algebra 1

Support/cosupport projection

A support projection C (T ) satisfies C (T ) ≤ P iff T = PT

A cosupport projection N(T ) satisfies P ≤ N(T ) iff TP = 0

Support hypothesis

We shall say that a C ∗-algebra A is supported if:

1 every T ∈ A has a support projection C (T ) such that

2 ∀S ,T ,R : C (S) ≤ C (T ) ⇒ C (RS) ≤ C (RT ) (stability).

Equivalent cosupport hypothesis

1 every T has a cosupport projection N(T ) such that

2 ∀S ,T ,R : N(S) ≤ N(T ) ⇒ N(SR) ≤ N(TR) .
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Supported C ∗-algebra 2

For any T ∈ A let Ann(T ) = {X ∈ A | TX = 0 }

Blackadar [1]

For every T ∈ A there is a projection P such that
Ann(T ) = Ann(P) . This implies P = C (T ∗) .

Rickart

For every T ∈ A there is an idempotent E such that
Ann(T ) = Ann(E ) .

Theorem

The three notions supported, Blackadar, and Rickart are
equivalent.

Kerzman-Stein formula [2]: C (E ) = E (E + E ∗ − I )−1
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Supported C ∗-algebra 3

von Neumann algebra

B(H) and more generally any von Neumann algebra is supported
in this sense.

C (X )

What about the C ∗-algebra C (X ) of continuous functions on a
(connected) compact Hausdorff space X?
Generally, C (X ) is not supported.
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The division category 1

Definition of M(A) = M
Objects: elements of A
Morphisms: U : R // S such that Ann(R) = Ann(U) , and
U ∈ SA (also written S | U).

R
U //

VU
S ��

S

V
��
T

R
R //

UR
R

=U ��

R

U
��
S

R
U //

SU
S
=U ��

S

S
��
S

If U = SX , then VU
S = VX .
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The division category 2
The divisor preorder

Let DIV(A) denote the divisor preorder ⪯ on (the underlying ring
of) A such that U ⪯ R if U = RX for some X .

Proposition

Then DIV(A) ≃ M/I .

Proof

Objects: R maps to R : R // I , and in the other direction
U : R // I to U . The top morphism is an isomorphism.

R U 44

U ��

U

R
yy

U
��
I
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The division category 3
Definition

Let M denote the topos of presheaves on M .

Representable presheaf

Let S ∈ A . Ŝ : Mop // Set
Ŝ(R) = M(R,S) = {morphisms U : R // S of M}
= {U | Ann(R) = Ann(U) and S | U }.

Representable presheaf associated with the unit I

Î : Mop // Set
Î (R) = {U ∈ A | Ann(R) = Ann(U) }
Note: R ∈ Î (R) so Î has global support.
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The division category 4

Proposition

M is an étendue.

Proof

A right A-subset of A is the same as a downset of DIV(A) . Let
O(A) denote the frame of right A-subsets of A , with topos
Sh(A) . O(A) and the frame Sub(Î ) are isomorphic.

Sh(A)

		

++
M /Î

		

kk

SETDIV(A)op ,,

HH

SETM/I op

kk

HH
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Polar decomposition 1

Definition

A subcategory D //M is an étale subcategory if:

1 for any two objects R, S of D , if S | R , then the morphism
R : R // S is in D ;

2 in a triangle R
U //

VU
S ��

S

V
��
T

of composable morphisms of M

if V , VUS ∈ D , then U ∈ D .

Example: projections and partial isometries

Let ∂ //M denote the subcategory whose objects are all the
projections of A , such that a morphism U : P // Q is in ∂ just
when U is a partial isometry.
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Polar decomposition 2

Proposition

A morphism U : P // Q of M is in ∂ iff P = U∗U .
∂ //M is an étale subcategory.

Proof

If U is a partial isometry, then it follows that P = C (U∗) = U∗U .
Conversely, if P = U∗U , then U is a partial isometry.

Definition

A subcategory D //M is wide if it every object of M is in D .
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Polar decomposition 3

Theorem

Wide étale subcategories of M and quotients of Î correspond.

Wide étale subcats

quotient of cosets
--
quotients of Î

principal fiber

ll

Example

Let I ⊆ A be a right ideal. Then the morphisms U : R // S such
that U ≡ R (mod I) form a wide étale subcategory of M .
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Polar decomposition 4

Lemma 1

Suppose D //M is a wide étale subcategory. Suppose we are
given S ,V such that Ann(S) = Ann(V ) . Then t.f.a.e.

1 the morphism V : S // I is in D ;

2 for any T , if T | V , then V : S // T is in D ;

3 the morphism V : S // V is in D .

Lemma 2

A wide étale subcategory of M is closed under domain restrictions.
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Polar decomposition 5

Proof

The domain restriction of a morphism is the following
factorization. Let U = VR

S .

R
U //

R
��

U

U
��

S
V // T

If the morphism V is in D , then R
U // U is in D .
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Polar decomposition 6

Coset of a subcategory D //M
Let U ∈ A . Let

DU = { VU

S
| S |U and V : S // T ∈ D }

We call DU a coset of D . DU is a subset of A .

Example

DI = { V

S
| S | I and V : S // T ∈ D }
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Polar decomposition 7

Lemma 3

Suppose D //M is a subcategory.

1 If a morphism V : S // T of M is in D , then V ∈ DS .

2 U ∈ DU iff there is an object S of D such that S | U .

Proof

1. Use S
S // S

V // T equals V .

2. Use U
U // S

S // S equals U .

Lemma 4

Suppose D //M is a wide étale subcategory. Let U,W ∈ A .
Then U ∈ DW iff DU ⊆ DW .
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Polar decomposition 8

Proof

Suppose U ∈ DW , so that U = VW
S , V is in D . Let XU

R be an
arbitrary element of DU . By Lemma 2 the domain restriction is in
D (diagram). The other two top horizontals are also in D .

W

U
))

U
//

W
��

U

U
��

U
// R

X //// Q

S
V // T

Thus, the composite XU
R is in D . By Lemma 3 XU

R ∈ DW .
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Polar decomposition 9

Presheaf of cosets for wide étale D //M

Î/D (R) = {DU | Ann(R) = Ann(U) }

Transition along W : Q // R maps DU 7→ DUW
R .

Well-defined: suppose DU1 = DU2 . Then U1 ∈ DU2 , so
U1W
R ∈ DU2W

R . By Lemma 4 we have DU1W
R ⊆ DU2W

R .
The other inclusion is just the same.

The quotient q : Î // Î/D
We have a map

qR : Î (R) // Î/D (R) ; U 7→ DU .

Naturality is immediate, so we have a legitimate quotient q in M .
The corresponding element q ∈ Î/D(I ) is the coset DI .
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Polar decomposition 10

Principal fiber of q : Î // F , where F is a presheaf

A morphism U : R // S is in the principal fiber of q just when the
outside triangle commutes (the inside one commutes iff
R = SU

S = U).

R̂

qR

��

U
,,

R

��

Ŝ

S

��
qS

��

Î

q

��
F

Let PF (q) denote the principal fiber of q .
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Polar decomposition 11

Equivalently, let q ∈ F(I )

U : R // S is in PF (q) just when q · U = q · R

R

R

��

U

��

F(I )

x 7→x ·R

��

x 7→x ·U

��
I F(R)

Proposition

FP(q) is a wide étale subcategory of M .
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Polar decomposition 12

Lemma 5

Let q ∈ F(I ) . For any U,W ∈ Î (R) , we have U ∈ PF (q)W iff
q · U = q ·W .

Proof

Suppose U ∈ PF (q)W . Then we have a diagram like this, where
V ∈ PF (q) , so q · V = q · S .

R
W
//
U

((S V
))

S

55 I

Then

q · U = (q · V ) ·W = (q · S) ·W = q · (SW
S

) = q ·W .
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Polar decomposition 13

Proof continued...

Suppose q · U = q ·W . Then we have a diagram like this:

R
W
//
U

((W U
))

W

55 I

Then U ∈ PF (q) , whence U = UW ∈ PF (q)W (Lemma 3 again).
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Polar decomposition 14

The comparison map ε(q) = ε associated with q ∈ F(I )

Let εR(FP(q)U) = qR(U) = q · U .
By Lemma 5 εR is a well-defined injective map.

Î (R)
U 7→PF (q)U

yyyy

qR

""
Î/PF (q)(R) //

εR // F(R)

Î

||||

q

��
Î/PF (q) //

ε // F

ε is an isomorphism iff q is an epimorphism.
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Polar decomposition 15

Proof of Theorem

It remains to show that a given wide étale subcategory D is
recovered as the principal fiber of the quotient q : Î // Î/D .
A morphism U : R // S of M is in PF (q) iff
DU = DI · U = DI · R = DR , which is so iff U ∈ DR and
R ∈ DU . If U : R // S is in D , then the isomorphism
U : R // U and its inverse R : U // R are in D . It follows that
U ∈ DR and R ∈ DU , so D is a subcategory of PF (q) .
Conversely, suppose U : R // S is a morphism of M satisfying
U ∈ DR . Then we have a diagram, where V ∈ D .

R
R
//
U

((T
V
// I

Therefore, U : R // I is in D .
By the étale property U : R // S is in D .
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Polar decomposition 16

The presheaf of positive operators Î+ : Mop // Set

0 ≤ A means A is self-adjoint, non-negative spectrum. Let

Î+(R) = { 0 ≤ A | Ann(A) = Ann(R) }

Transition in Î+ along U : R // S of M : let A ∈ Î+(S) .
Therefore,

√
A ∈ Î+(S) .

Define A · U = (
√
AU
S )∗

√
AU
S = U∗AU

S∗S , which is positive. If

U = SX , then
√
AU
S =

√
AX so A · U = (

√
AX )∗

√
AX = X ∗AX .

R
U //

√
AU
S ��

S
√
A

��
I
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Polar decomposition 17

The positive quotient d : Î // Î+

dR : Î (R) // Î+(R) ; dR(U) = U∗U
d is a natural transformation (exercise).
d is an epimorphism: if Ann(A) = Ann(R) , then dR(

√
A) = A .

Exercise

By Yoneda, d corresponds to an element of

Î+(I ) = { 0 ≤ A | Ann(A) = 0 } .

This element is the unit I .
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Polar decomposition 18
The principal fiber of the positive quotient d

A morphism U : R // S of M is in PF (d) just when

U∗U = I · U = I · R = R∗R .

This condition is stronger than the annihilator condition: if
U∗U = R∗R , then

Ann(U) = Ann(U∗U) = Ann(R∗R) = Ann(R) .
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Polar decomposition 19

Projections and partial isometries again

Let P(A) = P denote the full subcategory of M on the
projections of A . In other words, the objects of P are the
projections of A , and a morphism U : P // Q is an element
U ∈ A such that Ann(P) = Ann(U) and U = QU .
The étale subcategory ∂ //M factors through P as a wide
étale subcategory (next diagram).

Jon More toposes and C∗-algebras



Polar decomposition 20

Proposition

The following is a pullback of subcategories of M .

∂
full //

wide étale

��

étale

!!

PF (d)

wide étale

��
P

ψ(P)=P

full
//M

If U : P // S is a morphism of PF (d) , where P is a projection,
then U∗U = P∗P = P , whence U∗U is a projection, so that U is a
partial isometry. In particular, the top horizontal is full.
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Polar decomposition 21

Generated wide étale subcategory

An étale subcategory D is contained in a smallest wide étale
subcategory ⟨D⟩ .

D //

étale

  

⟨D⟩

wide étale

��
M

If an étale subcategory D is fully contained in a wide étale
subcategory, then D // ⟨D⟩ is full.
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Polar decomposition 22

Example

∂

full
++

full
//

étale

��

⟨∂⟩

wide étale

��

// PF (d)

wide étale

~~
M
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Polar decomposition 23

Definition

We shall say that a unital C ∗-algebra A admits polar
decomposition if ⟨∂⟩ = PF (d) (iff ⟨∂⟩ // PF (d) is full).
Equivalently, A admits polar decomposition if the canonical
natural transformation depicted below is an isomorphism (iff it is a
monomorphism).

Î

~~~~

d

�� ��
Î/⟨∂⟩ // // Î+
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Comparing quotients across a geometric morphism 1

Presheaves

Essential geometric morphism:

D ψ //

Yoneda
��

C
Yoneda
��

D
ψ!

,, C
ψ∗

ll

Let F be a presheaf on C . What is ψ!ψ
∗(F) ?

ψ!ψ
∗(F)(C ) = {C

m // ψD
x // F }/ ∼
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Comparing quotients across a geometric morphism 2

Example

Essential subtopos.

P
ψ(P)=P //

Yoneda
��

M
Yoneda
��

P
ψ!

,,M
ψ∗

ll

F a presheaf on M .

ψ!ψ
∗(F)(S) = { S

U // P
x // F }/ ∼

where P is a projection, U = PU , and x ∈ F(P) .
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The spectrum of a commutative C ∗-algebra 1

Let A denote a unital commutative C ∗-algebra A .

Definition

Let O(Spec(A)) denote the poset of norm-closed ideals of A .

Proposition

O(Spec(A)) is a frame. Its points may be identified with the
maximal ideals of A .
For any ideal I ⊆ A we have

I =
⋂
I⊆M

M (norm-closure).
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The spectrum of a commutative C ∗-algebra 2

The functor H

We define a functor H

DIV(A)

H

))
R 7→RA

��
O(A)

H∗
// O(Spec(A))

(5)

such that
H(R) = RA =

⋂
R∈M

M .

O(A) denotes the frame of A-subsets of A (a subset of A that is
closed under multiplication by elements of A .)
If U ⪯ R , then H(U) ⊆ H(R) , so that H is indeed a functor.
H(0) = (0) , H(I ) = A , and H(RS) = H(R) ∩ H(S) .
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The spectrum of a commutative C ∗-algebra 3

The frame map H∗

The suprema extension H∗ is given by the norm-closure of the
ideal generated by an A-subset X ⊆ A :

H∗(X ) = (X ) =
⋂
X⊆M

M .

H is flat in the sense that H∗ preserves finite infima.
Thus, we have geometric morphisms as follows.

Sh(Spec(A))

����

// H∗⊣H∗ //M /Î

étale surjection

����
SPEC(A) // //M
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GNS representation theory 1

Functionals

A functional on A is a bounded linear map
τ : A // C (complex numbers).
Let B(A) denote the vector space of functionals on A .

B(A) is a Banach space: ∥τ∥ = sup
X ̸=0

|τ(X )|
∥X∥

B(A) is an A-module: τU(X ) = τ(XU∗)
∥τU∥ ≤ ∥τ∥ ∥U∥ holds (exercise).
B(A) is a Banach A-module.

Positive functional

A functional τ is positive if 0 ≤ τ(A) for every positive A .
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GNS representation theory 2

Example: sesquilinear form on A
If τ is a functional on A , then ⟨U,V ⟩ = τ(UV ∗) is a sesquilinear
form on A satisfying

⟨UX ,V ⟩ = ⟨U,VX ∗⟩ .

If τ is positive, then ⟨U,V ⟩ is a semi inner-product, so that
∥U∥2 =

√
⟨U,U⟩ =

√
τ(UU∗) is a seminorm on A .

∥U∥2 is not to be confused with the C ∗-algebra norm ∥U∥ of A .
We have ∥U∥2 = ∥U∥ just when τ(UU∗) = ∥UU∗∥ .

Definition: sesquilinear form on an A-module

Let V be an A-module. A sesquilinear form on V must satisfy

⟨uX , v⟩ = ⟨u, vX ∗⟩ .
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GNS representation theory 3

The Cauchy-Bunyakovsky-Schwartz Lemma (CBS)

If a sesquilinear form on V is positive and symmetric, then

|⟨u, v⟩|2 ≤ ⟨u, u⟩⟨v , v⟩ .

In particular, if τ is positive (whence τ is Hermitian), then

|τ(UV ∗)|2 ≤ τ(UU∗)τ(VV ∗) .

Annihilators

Ann(τ) = {V | τV = 0 } ,

where τV = 0 means τ(UV ∗) = 0 for every U ∈ A .

Lemma

For any positive τ and V we have τV = 0 iff τ(VV ∗) = 0 .
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GNS representation theory 4

Proposition

Let τ be a positive functional on A .
Then U ≡ R (mod Ann(τ)) iff τ(UU∗) = τ(RR∗) = τ(RU∗) .

Proof

If U ≡ R (mod Ann(τ)), then τU = τR , whence
τ(UU∗) = τ(RR∗) = τ(RU∗) .
Conversely, if these three are equal, then
τ(UU∗) + τ(RR∗) = τ(RU∗) + τ(RU∗) = τ(RU∗) + τ(UR∗) ,
so that τ((U − R)(U∗ − R∗)) = 0 , whence U ≡ R (mod Ann(τ)).

The wide étale subcategory of a positive τ

Let τ be a positive functional on A . Then its wide étale
subcategory consists of morphisms U : R // S of M such that
τ(UU∗) = τ(RR∗) = τ(RU∗) .
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GNS representation theory 5

Module to presheaf

Let B̂(A)(R) denote

A-MOD(RA,B(A)) ∼= { τ ∈ B(A) | Ann(R) ⊆ Ann(τ) } .

Transition in B̂(A) along U : R // S is given by

τ · U = τ
U

S
= τY ; U = SY .

τ · U(X ) = τY (X ) = τ(XY ∗) ; R̂
U //

τ ·U   

Ŝ

τ~~

B̂(A)
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GNS representation theory 6

B(A) classifies functionals

Let V be a seminormed A-module.

A-BDD(V,B(A))
γ 7→γ

--
B(V)

δ̂←[δ
oo

γ(v) = γ(v)(I ) ; δ̂(v)(U) = δ(vU∗)

For instance,
γ(vz) = γ(vz)(I ) = γ(v)(z) = γ(v)(I )z = γ(v)z .
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GNS representation theory 7

B̂(A) again

Let V = RA

{ τ ∈ B(A) | Ann(R) ⊆ Ann(τ) }
τ 7→τ

,,
B(RA)

δ̂←[δ
nn

τ(RX ) = τ(X ∗) = τ †(X ) ; δ̂(U) = δ(RU∗)

τ is well-defined: if RX = RY , then τX = τY so that
τ(X ∗) = τX (I ) = τY (I ) = τ(Y ∗) .
Both sides are A-modules (actually A-algebras): the right side in
the usual way (1), and the left side by τ • U(X ) = τ(UX ) . Note
that Ann(τ) ⊆ Ann(τ • U) . Furthermore, the bijection respects
the two actions.
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GNS representation theory 8

On our way...

We are prepared to analyzed the geometric morphism

M /B̂(A)

��
M
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Thank you
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