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Introduction 1

A unital C*-algebra A has associated with it a category

M(A) = M, which | call the division category of (the underlying
ring of) A. A typical object of M is an element of A, denoted
R, S etc., and a morphism U : R—=S is an element U of A such
that Ann(R) = Ann(U) and U = SX for some X, where

Ann(R) ={X € A| RX =0}. (There is also a category with the
same objects but with morphisms U such that Ann(R) C Ann(U);
however, | prefer to work with M as it offers a bit more flexibility.)
For instance, for any element R of A, the objects R and R*R are
isomorphic in M . It is sometimes good to know that there is a
weak equivalence functor from M to the category of principal right
ideals of A and injective .A-module maps between them mapping
an object R of M to the right ideal RA it generates.

Let .# denote the topos of presheaves on M.
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Introduction 2

We shall discuss three aspects beginning with:

1. The positive quotient and polar decomposition. An operator T
on Hilbert space has a polar form T = UA, where A is positive, U
is a partial isometry, and Ann(T) = Ann(U). Let us say that a
C*-algebra A admits polar decomposition if every element of it has
such a decompostion. It follows that if A admits polar
decomposition, then necessarily A is supported as | call it.
(Moreover, it follows that A= |T| =+ T*T and that the
decomposition is unique.) How do we generalize polar
decomposition to all C*-algebras, and not just the supported ones?
This question has an answer in terms of a canonical correspondence
between wide étale subcategories of M and the quotients in .# of
the representable presheaf associated with unit of A.

2. The Gelfand spectrum of a commutative C*-algebra:
I-dimensional representations. How this is related to M follows a
pattern similar to the Zariski spectrum of a commutative ring.
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Introduction 3

3. GNS-representation theory (in any dimension), and the
spectrum of an arbitrary C*-algebra. One of our tools is what we
shall call a seminormed A-module, by which we mean a right
A-module V that carries a seminorm such that

YveV,VUeA, [[vU| <|v[|U] .

(Thus, if |[v]] =0, then ||vU|| = 0 for every U.) The functional
dual B(A), consisting of bounded C-linear maps 7 : A—C, is
an important A-module especially for GNS-theory. Its right action
is defined by

TU(X) =71(XU*); T € B(A). (1)

What is more this action satisfies ||[7U|| < ||7|| ||U||, so B(A) is a
normed A-module. B(.A) classifies functionals in the sense that for
any seminormed A-module V there is a natural isomorphism

B(V) 22 A-Bdd(V, B(A)). (2)
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Introduction 4

Another important tool is how to parameterize a (right) .A-module
as an object of .Z: if V is an A-module, then

V(R) = A-Mod(RA,V) = {v € V| Ann(R) C Ann(v) }
is a presheaf on M. If V is a seminormed A-module, then an
A-module map RA——YV s necessarily bounded. Therefore, we

have

V(R) = A-Bdd(RA,V) (bounded A-module maps).  (3)
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Introduction 5

—

From this point of view transition in B(.A) along a morphism
U: R—=S of M is achieved in the following way by passing to
principal right ideals.

RX—UX
RA™ —SA 71-U(RX)=1(UX)

RN

C

—

The upshot is that B(.A) is the presheaf of functional germs on A,

—

suggesting that B(.A) may be interpreted as the complex numbers

object of the topos .#Z. In any case, B(.A) is a ring object with a
conjugation operation (such that 7(5X) = 7(5X) ) internal to .Z.
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Supported C*-algebra 1

Support/cosupport projection
@ A support projection C(T) satisfies C(T) < P iff T = PT
@ A cosupport projection N(T) satisfies P < N(T) iff TP =0

Support hypothesis

We shall say that a C*-algebra A is supported if:
@ every T € A has a support projection C(T) such that
Q@ VS, T,R: C(S)<C(T)= C(RS) < C(RT) (stability).

Equivalent cosupport hypothesis

@ every T has a cosupport projection N(T) such that
Q@ VS, T,R: N(S)<N(T)= N(SR) < N(TR).
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Supported C*-algebra 2

Forany Te Alet Ann(T)={X e A| TX =0}

Blackadar [1]

For every T € A there is a projection P such that
Ann(T) = Ann(P). This implies P = C(T%).

For every T € A there is an idempotent E such that
Ann(T) = Ann(E).

The three notions supported, Blackadar, and Rickart are
equivalent.

Kerzman-Stein formula [2]: C(E) = E(E + E* — )~}
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Supported C*-algebra 3

von Neumann algebra

B(H) and more generally any von Neumann algebra is supported
in this sense.

What about the C*-algebra C(X) of continuous functions on a
(connected) compact Hausdorff space X?
Generally, C(X) is not supported.
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The division category 1

Definition of M(A) = M
Objects: elements of A

Morphisms: U : R— S such that Ann(R) = Ann(U), and
U e SA (also written S | U).

If U= SX, then ¥ = VX.

.
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The division category 2

The divisor preorder

Let DIV(.A) denote the divisor preorder < on (the underlying ring
of) A such that U < R if U = RX for some X .

Proposition

Then DIV(A) ~ M/I.

Objects: R maps to R: R—=1, and in the other direction
U: R—1to U. The top morphism is an isomorphism.

RN

R
U

N
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The division category 3

Definition
Let .# denote the topos of presheaves on M.

Representable presheaf

Let S€ A. 5. M — Set
S(R) = M(R,S) = { morphisms U : R—=S of M }
={U|Ann(R)=Ann(U)and S | U}.

Representable presheaf associated with the unit /
T: MoP — Set

I(R)={Ue€ A|Ann(R) = Ann(U) }

Note: R € I(R) so I has global support.
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The division category 4

Proposition

A is an étendue.

A right A-subset of A is the same as a downset of DIV(.A). Let
O(A) denote the frame of right A-subsets of A, with topos

~

Sh(A). O(A) and the frame Sub(/) are isomorphic.

ShA) T )T

SETPMMA” — T GETM/IT
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Polar decomposition 1

A subcategory D —— M is an étale subcategory if:
@ for any two objects R, S of D, if S | R, then the morphism
R:R—SisinD;

@ in a triangle R V.5 of composable morphisms of M

w

IS}

T
if V,Y? €D, then UeD.
v

Example: projections and partial isometries

Let 0 ——= M denote the subcategory whose objects are all the
projections of A, such that a morphism U : P— Q@ is in O just

when U is a partial isometry.
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Polar decomposition 2

A morphism U : P— Q of M isin 0 iff P = U*U
0 ——> M s an étale subcategory.

If U is a partial isometry, then it follows that P = C(U*) = U*U
Conversely, if P = U*U, then U is a partial isometry.

A subcategory D —— M is wide if it every object of M isin D.

V
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Polar decomposition 3

Wide étale subcategories of M and quotients of lAcorrespond.

quotient of cosets

Wide étale subcats quotients of I
-~ @ —

principal fiber

Let Z C A be a right ideal. Then the morphisms U : R— S such
that U = R (mod Z) form a wide étale subcategory of M.
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Polar decomposition 4

Suppose D —— M is a wide étale subcategory. Suppose we are
given S, V such that Ann(S) = Ann(V). Then t.fa.e.

@ the morphism V:S—/isin D;
@ forany T,if T|V,then V:S—TisinD;
© the morphism V:S5—Visin D.

V

A wide étale subcategory of M is closed under domain restrictions.
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Polar decomposition 5

The domain restriction of a morphism is the following

factorization. Let U = %.

U

H‘U
lu
BRVART

R
g
S

U
If the morphism V isin D, then R — U isin D.
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Polar decomposition 6

Coset of a subcategory D —— M

Let Uec A. Let
DU:{%] S|UandV:S—T €D}

We call DU a coset of D. DU is a subset of A.

Dl:{%| S|landV:5—T €D}
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Polar decomposition 7

Suppose D —— M is a subcategory.
@ If a morphism V:S—=T of M isin D, then V € DS.
@ U e DU iff there is an object S of D such that S| U.
W
S 1%
1. UseS — S — T equals V.
U S
2. Use U — S — S equals U. )
Suppose D —— M is a wide étale subcategory. Let U, W € A.
Then U € DW iff DU C DW .

.
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Polar decomposition 8

Suppose U € DW , so that U = VW , VisinD. Let Y be an
arbitrary element of DU . By Lemma 2 the domain restrlctlon is in
D (diagram). The other two top horizontals are also in D

ST

s Y.T

X5 Q

Thus, the composite X—Rfj isin D. By Lemma 3 X—R‘,J cDW.

Jon More toposes and C*-algebras



Polar decomposition 9
Presheaf of cosets for wide étale D —— M

1/D(R) = {DU | Ann(R) = Ann(U) }

Transition along W : @ — R maps DU — D% :
Well-defined: suppose DU; = DU, . Then U; € DU, so
% € D%. By Lemma 4 we have DUIRW C D%.
The other inclusion is just the same.

The quotient g : — T/D

We have a map
gr : 1 (R)—=1/D(R); U+ DU.

Naturality is immediate, so we have a legitimate quotient q in ..
The corresponding element g € //D(/) is the coset DI .
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Polar decomposition 10

Principal fiber of g : IA%]-", where F is a presheaf
A morphism U : R—=S is in the principal fiber of g just when the
outside triangle commutes (the inside one commutes iff

R=2¥=U).

PN u A
R— =S

\R\\ /
qR I qs
|
f‘

Let PF(q) denote the principal fiber of g .
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Polar decomposition 11
Equivalently, let g € F(/)

U:R—=Sisin PF(q) justwheng-U=¢q"-R
R F(I)

U R x—x-U x—x-R
/ F(R)

Proposition

FP(q) is a wide étale subcategory of M.
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Polar decomposition 12

-~

Let g € (/). For any U,W € I(R), we have U € PF(q)W iff
g-U=¢q - W.

Suppose U € PF(q)W . Then we have a diagram like this, where
VePF(g),soq-V=q-S.

)
R~ S—v>)
W \J
S
Then
SWw
q.U:(q-V)-W:(q'S)'W:q~(T):q-W.
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Polar decomposition 13

Proof continued...

Suppose g- U =q- W . Then we have a diagram like this:

U
/x
R~ W_ o>
w w

Then U € PF(q), whence U = UW € PF(q)W (Lemma 3 again)

V.
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Polar decomposition 14

The comparison map £(q) = € associated with g € F(/)
Let er(FP(q)U) = qr(U) =q- U.
By Lemma 5 eg is a well-defined injective map.

~

I(R) I

NN

1/PF(q)(R) ——= F(R) 1/PF(q)—=

€ is an isomorphism iff g is an epimorphism.

]:
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Polar decomposition 15

Proof of Theorem

It remains to show that a given wide étale subcategory D is
recovered as the principal fiber of the quotient g : [ —1/D.

A morphism U : R—=S of M is in PF(q) iff

DU =DI-U=DI-R=DR, which is so iff U € DR and
ReDU. If U: R—=S isin D, then the isomorphism
U:R—U and its inverse R: U—= R are in D. It follows that
Ue DR and Re€ DU, so D is a subcategory of PF(q).
Conversely, suppose U : R— 5 is a morphism of M satisfying
U € DR. Then we have a diagram, where V € D.

U
— - =

R——T —>=1
R |74

Therefore, U: R—1 isin D.
By the étale property U: R—= S isin D.
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Polar decomposition 16

The presheaf of positive operators I+ : M°P —= Set

0 < A means A is self-adjoint, non-negative spectrum. Let
IT(R)={0< A|Ann(A) = Ann(R) }

Transition in /T along U: R—=S of M: let A€ 1(S).
Therefore, VA € I7(S).

Define A- U = (VAU)*YAU _ UAU \yhich is positive. If

U=SX, then@ \FX so A- U= (VAX)"VAX = X*AX .

R

%c

S
|va
VAU
/
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Polar decomposition 17

The positive quotient d : | —= I+

dr : 1(R)—=Tt(R) ; dr(U) = U*U
d is a natural transformation (exercise).
d is an epimorphism: if Ann(A) = Ann(R), then dr(v/A) = A.

By Yoneda, d corresponds to an element of

1T(1)={0< A|Ann(A) =0}.

This element is the unit /.
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Polar decomposition 18

The principal fiber of the positive quotient d

A morphism U : R— S of M is in PF(d) just when

U'U=1-U=1-R=R*R.

This condition is stronger than the annihilator condition: if
U*U = R*R, then

Ann(U) = Ann(U*U) = Ann(R*R) = Ann(R).
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Polar decomposition 19

Projections and partial isometries again

Let P(A) = P denote the full subcategory of M on the
projections of A . In other words, the objects of P are the
projections of A, and a morphism U : P— Q@ is an element

U € A such that Ann(P) = Ann(U) and U = QU.

The étale subcategory 0 —— M factors through P as a wide
étale subcategory (next diagram).

.
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Polar decomposition 20

Proposition
The following is a pullback of subcategories of M.
o —"__ PF(d)

étale

wide étale wide étale
H(P)=P
P2 M
full

If U: P—S is a morphism of PF(d), where P is a projection,
then U*U = P*P = P, whence U*U is a projection, so that U is a
partial isometry. In particular, the top horizontal is full.
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Polar decomposition 21

Generated wide étale subcategory

An étale subcategory D is contained in a smallest wide étale
subcategory (D) .

D

(D)

, wide étale
étale

M

If an étale subcategory D is fully contained in a wide étale
subcategory, then D —— (D) is full.
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Polar decomposition 22

fuII

fuII
wide étale
et& o

=~ (9) ——= PF(d
ide étale

Jon
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Polar decomposition 23

Definition

We shall say that a unital C*-algebra A admits polar
decomposition if (0) = PF(d) (iff (9) —— PF(d) is full).
Equivalently, A admits polar decomposition if the canonical
natural transformation depicted below is an isomorphism (iff it is a

monomorphism).
I
/ X
1/(0) ———T*

.
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Comparing quotients across a geometric morphism 1

Presheaves

Essential geometric morphism:

p—2 ¢
Yonedal LYoneda
P
9 ¢
w*

Let F be a presheaf on C. What is ¢¢*(F)?

b (F)(C)={C > D == F}/ ~
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Comparing quotients across a geometric morphism 2

Essential subtopos.

M
YonedaL LYoneda
P
P M
’l/)*

F a presheaf on M.

P (F)S) ={S — P =~ F}/ ~

where P is a projection, U = PU, and x € F(P).
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The spectrum of a commutative C*-algebra 1

Let A denote a unital commutative C*-algebra A.

Definition
Let O(Spec(A)) denote the poset of norm-closed ideals of A.

Proposition

O(Spec(.A)) is a frame. lts points may be identified with the
maximal ideals of A .
For any ideal Z C A we have

7= ﬂ M (norm-closure).
IcMm
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The spectrum of a commutative C*-algebra 2

We define a functor H

DIV(A) (5)

H
R»—)RA\L

O(A) al O(Spec(.A))

such that
H(R)=RA= (M.
ReM
O(.A) denotes the frame of A-subsets of A (a subset of A that is
closed under multiplication by elements of A.)
If U= R, then H(U) C H(R), so that H is indeed a functor.
H(0) = (0), H(I) = A, and H(RS) = H(R) N H(S).
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The spectrum of a commutative C*-algebra 3

The frame map H*

The suprema extension H* is given by the norm-closure of the
ideal generated by an A-subset X C A:

H (X)=(X)= (| M.
XCM

H is flat in the sense that H* preserves finite infima.
Thus, we have geometric morphisms as follows.

Sh(Spec(A)) ——~ /T
étale surjection
SPEC(A) M
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GNS representation theory 1

A functional on A is a bounded linear map

7 : A—C (complex numbers).

Let B(.A) denote the vector space of functionals on A.
[T (X)

B(.A) is a Banach space: ||7]| = sup
xzo X

B(A) is an A-module: 7U(X) = 7(XU*)

Il7U|| < ||7]| ||U]| holds (exercise).

B(.A) is a Banach A-module.

Positive functional

A functional 7 is positive if 0 < 7(A) for every positive A.
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GNS representation theory 2

Example: sesquilinear form on A

If 7 is a functional on A, then (U, V) = 7(UV*) is a sesquilinear
form on A satisfying

(UX, V) = (U, VX*).

If 7 is positive, then (U, V) is a semi inner-product, so that
U2 = \/(U, U) = /7(UU*) is a seminorm on A.

||U||2 is not to be confused with the C*-algebra norm ||U|| of A.
We have ||U||2 = ||U]| just when 7(UU*) = [JUU*| .

Definition: sesquilinear form on an A-module

Let V be an A-module. A sesquilinear form on ¥V must satisfy

(uX, vy = (u,vX™).
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GNS representation theory 3

The Cauchy-Bunyakovsky-Schwartz Lemma (CBS)

If a sesquilinear form on V is positive and symmetric, then
2
[(u, v)|® < (u, u){v,v).
In particular, if 7 is positive (whence 7 is Hermitian), then

IT(UV*)|? < 7(UU*)T(WVF).

Annihilators

Ann(t)={V |7V =0},
where 7V = 0 means 7(UV*) = 0 for every U € A.

For any positive 7 and V we have 7V = 0 iff 7(VV*) = 0.
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GNS representation theory 4

Let 7 be a positive functional on A.
Then U = R (mod Ann(7)) iff 7(UU*) = 7(RR*) = 7(RU*).

If U= R (mod Ann(7)), then 7U = TR, whence
T(UU*) = 7(RR*) = 7(RU™").
Conversely, if these three are equal, then

7(UU*) + 7(RR*) = 7(RU*) + 7(RU*) = 7(RU*) + 7(UR"),
so that 7((U — R)(U* — R*)) =0, whence U = R (mod Ann(7)).

The wide étale subcategory of a positive 7

Let 7 be a positive functional on A. Then its wide étale
subcategory consists of morphisms U : R—=S of M such that
T(UU*) = 7(RR*) = 7(RU™*).
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GNS representation theory 5

Module to presheaf

—

Let B(A)(R) denote

A-MOD(RA, B(A)) = {7 € B(A) | Ann(R) C Ann(7) }.

Transition in B(.A) along U : R—=S is given by

T-U:T%:TY; U=SY.

- UX)=7Y(X)=71(XY*): R Y 5

Jon More toposes and C*-algebras



GNS representation theory 6

B(.A) classifies functionals

Let ¥V be a seminormed .A-module.

Y=y

A-BDD(V, B(A)) B(V)

B
<
610

For instance,
Y(vz) = y(vz)(I) = v(v)(Z) = »(v)(1)z =7(v)z.
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GNS representation theory 7

B/(\A) again
Let V= RA
TT
Ny T
{7 € B(A) | Ann(R) C Ann(7) } B(RA)
AR
5416

7(RX) = 7(X*) = 71(X) ; §(U) = 5(RU*)

7 is well-defined: if RX = RY , then 7X = 7Y so that
T(X*)=7X({)=7Y()=71(Y").

Both sides are A-modules (actually A-algebras): the right side in
the usual way (1), and the left side by 7 e U(X) = 7(UX). Note
that Ann(7) C Ann(7 e U) . Furthermore, the bijection respects
the two actions.
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GNS representation theory 8

We are prepared to analyzed the geometric morphism

—

A |B(A)
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